Professional Programming Services, Inc.

V.0O.S. L.
Virtual Operator Script Language

Professional Programming Services, Inc. 1-1 VOSL mv1.0.0696.01

Table of Contents

Overview
Introduction i-iii
How It Workso i-iii
Virtual Operator Script Example i-1ii
CONVENLIONS . . ottt et ettt et e e e e e e e e e e e e e e e et e i-iv
System Variables e 1-v
VOSL Directives
HCOMMENT . .. 1-1
LABEL . 1-2
GOT O o 1-3
RESPOND ... 1-4
SLEEP 1-6
W AT 1-7
VOSM Scheduling Mastert e 2-1

Professional Programming Services, Inc. 1-ii VOSL mv1.0.0696.01

Overview

Introduction
Professional Programming Services is proud to introduce the latest in job automation &
scheduling facility - “Virtual Operator”.

With Virtual Operator, it is now possible to run any series of programs or jobs (such as
month end jobs or complex reports) automatically and without operator assistance or
intervention.

How It Works
Virtual Operator is comprised of three modules:
1. VOSM - Virtual Operator Scheduling Master. Used to schedule Virtual
Operator scripts.

2. VORE - Virtual Operator Run Time Engine. Used to interpret and run Virtual
Operator scripts.

3. VOSL - Virtual Operator Script Language. A user defined list of instructions or
script, used by VORE to control an application program.

By attaching itself to a system level port, Virtual Operator can respond with information
to any application program “as if” from a keyboard. Conversely, information sent or displayed to
the screen by any application program can be monitored and evaluated by Virtual Operator.

With this communication link established, a user or system administrator can train Virtual
Operator via the Virtual Operator Scripting Language (VOSL) to respond appropriately to an
application's requirements. VOSL is a simple yet powerful and elegant scripting language used to
automatically monitor and respond to input required by a specific application program.

Virtual Operator Script Example

In this example (see figure 1), the application program expects the user to respond with
three pieces of information: Starting Customer #, Ending Customer # and Printer Selection. The
VOSL Script (see figure 2), will cause this application program to run a report of all customers
whose codes begin with /234, to printer 6. VOSL can also trap for ERROR and TIMEOUT
conditions.

Test Your Conpany Here nm dd/ yy HUHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH AR
Cust oner Master Report # Test VOSL Script "test.vos" #
-- HUHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH AR
Respond to "Starting Customer"” with "1234"
Respond to "Ending Custoner" with "1234zz"
Starting Customer : __ Respond to "Select Printer" with "6"
Endi ng Custoner end

Select Printer 1,2,3,4,5 or 6 :

Figure 1 Figure 2

Professional Programming Services, Inc. 1-i1i VOSL mv1.0.0696.01

Conventions

The following conventions are used in this manual:

ALL CAPS Used to denote a reserved word or System Variable.

Italics Used to denote a string of characters sent to or received from an application
program.

Bold Italics Used to denote a directive’s parameter.

[] Used to denote an optional parameter.

_enrer | Used to denote the Enter or Return key.

Used to denote a function key.

Professional Programming Services, Inc. 1-1v VOSL mv1.0.0696.01

System Variables

Name Value

ESC The Escape Key (Hex 1B, Ascii 27).

CR The Carriage Return or Enter Key (Hex 0D, Ascii 13).

LF The Line Feed Key (Hex 0A, Ascii 10).

QUO Double Quote Key (", Hex 22, Ascii 34).

F1-Fl6 Functions 1 through 16 Keys.

TODAY Today's Date in MM/DD/YY Format.

TODAY MDY Today's Date in MMDDY'Y Format.

TODAY_YMD Today's Date in YYMMDD Format.

TOMORROW_ MDY Tomorrow's Date in MMDDY'Y Format.

TOMORROW_YMD Tomorrow’s Date in YYMMDD Format.

LOGIN or NAME User Unix Login Name (Specified in VOSM).

PASSWORD User Unix Password (Specified in VOSM).

OPRC IDOL Operator Code (Specified in VOSM).

OPRP IDOL Password (Specified in VOSM).

NCR NONE - (No Carriage Return) Used to Suppress with the
RESPOND directive.

Professional Programming Services, Inc. i-v VOSL mv1.0.0696.01

#COMMENT

Directive: Facility for in-line script documentation.
PURPOSE This directive is used to denote the beginning of a comment.
SYNTAX #[text]

REMARKS All text following an unquoted # is ignored by Virtual Operator Run Time Engine
until the end of that line.

EXAMPLES #This is a comment

In this example the entire line is ignored.

Respond to “#” with “Hello” #Send Hello to the Application Program
In this example, the RESPOND directive is performed. All text following the
second # is ignored.

Professional Programming Services, Inc. 1-1 VOSL mv1.0.0696.01

:LABEL

Directive: Script reference point.

PURPOSE

SYNTAX
REMARKS

EXAMPLES

SEE ALSO

This directive is used as a script reference point allowing another directive to pass
script control to a point occupied by this label.

:label name

A label name must begin with a “:”. The maximum size for a label is 15
characters. Valid characters are A-Z, a-z, 0-9, and the “_” (Underline Character).
Labels are not case sensitive.

Goto :Block_1

Respond with *“” # This line will be skipped by the above GOTO directive
:Block 1

In this example, script control will be passed to :Block 1 by the GOTO directive.

Wait for “Read Mail ?” Timeout=3 Fail=:Block 2

Respond with “N”

:Block 2

In this example, script control will be passed to :Block 2, if the WAIT directive
FAILS to receive the string Read Mail ? from the application program.

GOTO, RESPOND & WAIT Directives.

Professional Programming Services, Inc. 1-2 VOSL mv1.0.0696.01

GOTO

Directive: Transfer script control to a location specified by a label.

PURPOSE This directive is used to transfer script control to a location specified by a label.

EXAMPLE Goto :Block_1
Respond with “” # This line will be skipped by the above GOTO directive
:Block_1
In this example, script control will be passed to :Block 1 by the GOTO directive.

SEE ALSO :LABEL Directive.

Professional Programming Services, Inc. 1-3 VOSL mv1.0.0696.01

RESPOND

Directive: Sends data to an application program.

PURPOSE This directive is used to send data to an application program, “as if” from a
keyboard. Optionally, this directive will wait for a trigger string (specified by the
TO option), to be displayed by the application program to its “screen”, prior to
responding. Additionally, the data can be resent multiple times until a trigger
string (specified by the UNTIL option) is satisfied.

SYNTAX RESPOND [TO stringl] WITH string2 [UNTIL string3] [TIMEOUT=valuel]
[RETRY=value2 [LABEL=labell]] [FAIL=label2]

where:

stringl

string2

string3

valuel

value2

labell

label2

is one or more string literal(s) or variable(s) used by the directive as
a trigger that must be satisfied before string2 is sent to the
application program.

is one or more string literal(s) or variable(s) used by the directive to
send data “as if” from a keyboard, to the application program.

is one or more string literal(s) or variable(s) used by the directive as
a trigger. The UNTIL option will cause the directive to resend the
data in string2 until string3 is satisfied.

is a integer literal (representing seconds) used by the directive to
determine whether or not a TIMEOUT condition has occurred. A
TIMEOUT condition will only occur when the TO or UNTIL
options are used and not satisfied, and no data has been displayed
to the “screen” by the application program for a time (in seconds)
greater than that specified by valuel. The default value for valuel
is 30 if the RETRY option is omitted, or 1 if the RETRY option is
specified.

is a integer literal used by the directive to determine the maximum
number of times (default 0) the current statement (or block, if the
LABEL option is specified) is to be retried after a TIMEOUT
condition has occurred. After value? retries, a subsequent
TIMEOUT condition will cause a FAIL condition to occur.

is a label referencing a location within the script. If the RETRY
option is specified and a TIMEOUT condition occurs, script control
will be passed to the location referenced by labell. If the RETRY
option is omitted the LABEL option is ignored.

is a label referencing a location within the script. If a FAIL
condition occurs, script control will be passed to the location
referenced by label2. 1f the FAIL option is omitted and a FAIL
condition occurs, an ERROR condition will occur, causing the
script to terminate with an error message result.

Professional Programming Services, Inc.

1-4 VOSL mv1.0.0696.01

(Continued...) RESPOND

REMARKS

EXAMPLES

SEE ALSO

RESPOND will automatically append to the end of s#ring2 unless the
system variable NCR (No Carriage Return) is specified as part of string2 or if the
last variable in string?2 is already an input terminator e.g. CR, F1, F2, F3, F4 etc.

Respond with “123zz” # Send 123zz & <Return>
Will send 123zz to the application program.

Respond to “Change ?” with “3” F3 # Send 3 with F3 key

Will wait for the application program to print Change ? to its “screen’ and then
respond with 3 [edir Change ? 1s not printed to the “screen” and the application
program is “quiet” for more than 30 seconds, a FAIL condition will occur and the
script will terminate with an error message.

:login # Label login. Top of block.
Respond with «” # Send <CR> to wake up System
Respond to “Login:” with NAME Retry=60 Label=:login Timeout=3

This script block will send to the application program. The script will then
wait 3 seconds for the application program to respond or display the literal Login..
If Login: is displayed by the application program, the script will respond with the
string value stored in the system variable NAME. Otherwise, the system will retry
up to 60 times starting at label :login and resend until the word Login: is
sent by the application program. If unsuccessful after 60 retries, a FAIL condition
will occur and the script will terminate with an error message result.

Respond with “” Until “Login:” Retry=60 Timeout=3
Respond with NAME
This script block is functionally identical to the preceding example.

Respond to “You have mail” with “S” Fail=:Menu_Select

Respond with “Y”

:Menu_Select

This script block will wait for You have mail to be sent by the application
program. If successful, the script will then Respond With an § (to save the
mail) and then respond with a Y (confirming that the mail should be
saved). If unsuccessful, script control will be passed to label :Menu_Select.

WAIT and :LABEL Directives.

Professional Programming Services, Inc. 1-5 VOSL mv1.0.0696.01

SLEEP

Directive: Puts the script to sleep.

PURPOSE This directive is used to synchronize the script with the application program by
waiting for a period of time, expressed in seconds.

SYNTAX SLEEP valuel
where:
valuel 1is a integer literal representing seconds.

REMARKS This statement is provided for compatibility purposes only and should be avoided.
The TIMEOUT, RETRY & FAIL options in the RESPOND & WAIT directives
should be used in its place.

EXAMPLE Sleep 600 # Sleep for 10 minutes
SEE ALSO RESPOND & WAIT Directives.

Professional Programming Services, Inc. 1-6 VOSL mv1.0.0696.01

WAIT

Directive: Waits for data to be sent by the application program.

PURPOSE This directive is used to synchronize the script with the application program by
waiting for the application program to send a trigger string.
SYNTAX WAIT [FOR] stringl [TIMEOUT=valuel| [RETRY=value2 [LABEL=labell]]
[FAIL=label2]
where:
stringl is one or more string literal(s) or variable(s) used by the directive as
a trigger that must be satisfied before continuing to the next script
statement.
valuel 1is a integer literal (representing seconds) used by the directive to
determine whether or not a TIMEOUT condition has occurred. A
TIMEOUT condition will only occur when stringl is not satisfied
and no data has been displayed to the “screen” by the application
program for a time (in seconds) greater than that specified by
valuel. The default value for valuel is 30 if the RETRY option is
omitted or 1 if the RETRY option is specified.
value2 1is a integer literal used by the directive to determine the maximum
number of times (default 0) the current statement (or block, if the
LABEL option is specified) is to be retried after a TIMEOUT
condition has occurred. After value? retries, a subsequent
TIMEOUT condition will cause a FAIL condition to occur.
labell 1is a label referencing a location within the script. If the RETRY
option is specified and a TIMEOUT condition occurs, script control
will be passed to the location referenced by labell. If the RETRY
option is omitted the LABEL option is ignored.
label2 is a label referencing a location within the script. If a FAIL
condition occurs, script control will be passed to the location
referenced by label2. 1f the FAIL option is omitted and a FAIL
condition occurs, an ERROR condition will occur, causing the
script to terminate with an error message result.
EXAMPLES Wait For “Login:” # Wait for a login prompt
Respond with NAME # Respond with Login Name
Will wait for the application program to display the literal Login:, before passing
script control to the proceeding RESPOND directive.
Wait for “Mail ?” Timeout=10 FAIL=:Menu_Select
Will wait for Mail ? to be sent by the application program. If successful, the script
will continue with the next script statement. If unsuccessful, script control will be
passed to label :Menu_Select.
SEE ALSO RESPOND and :LABEL Directives.

Professional Programming Services, Inc. 1-7 VOSL mv1.0.0696.01

Professional Programming Services, Inc.

V.0.S. M.
Virtual Operator Scheduling Master

Professional Programming Services, Inc. 2-1 VOSL mv1.0.0696.01

Nightly Batch Run Master Scheduler

Introduction

The Nightly Batch Run Master Scheduler allows a system administrator to:

A. Schedule a Virtual Operator Script.

B. Group scheduled scripts by user identity.
C. View the status or result messages of scripts that have already run.
D. Change or Delete a scheduled script.

NBRM MM DY YY

Ni ghtly Batch Run Schedul er

Coerator - T

Logi n :

Password :

Priority :
“Seq Description sched Days T
Enter perator Code
<CR>=CPR

Description

Figure 3

The main screen (see figure 3) is divided into two sections. The upper section is used to
associate one or more scripts with a specific user identity. This upper section contains four

prompts:

Operator

Login

Password

Priority

Cimpro / IDOL Menu System Operator Code - A three character user code
used to log in to Cimpro. The information entered here will be stored in
the system variable OPRC and may be used within the scripts scheduled
under this section. The variable OPRP containing the appropriate IDOL
Operator Password will automatically be set.

Unix Login Name - A name used to log in to Unix. The information
entered here will be stored in the system variable LOGIN and may be used
within the scripts scheduled under this section.

Unix Password - A Password used to log in to Unix. The information
entered here will be stored in the system variable PASSWORD and may
be used within the scripts scheduled under this section.

A number ranging for 0 to 999 - Used to give priority to one user's set of
schedules over another user's set of schedules. A user schedule containing
a lower priority value will be executed first.

Professional Programming Services, Inc. 2-2 VOSL mv1.0.0696.01

Nightly Batch Run Master Scheduler (Continued...)

The lower section contains information regarding what script will be run and when. This section
contains nine prompts:

Seq

Description

Sched Option

Day List

Starting

Program

Dependencies

Last Run

Result

System Generated Sequence. Displays the order in which scripts will be
run within the current user identity.

Used as documentation in describing the scheduled script.

Used in conjunction with “Day List”. Allows a script to be scheduled as a:
1. One time only event

2. Repeating event based on one or more days of the week (e.g. Mondays,
Wednesdays & Fridays).

3. Repeating event based on one or more days of the month (e.g. the 1st
& the 15th of every Month).

Used in conjunction with “Sched Option” to specify dates in which the
script will run.

Used to specify the starting date for this event. A scheduled script will
begin to run on or after this specified date.

Used to specify the Virtual Operator Script to be run.

Used to specify a dependency between the current script and other scripts.
The current script (specified in “Program”) will only run if the scripts
(specified in “Dependencies’) were successful.

System generated display field containing the date in which this script was
last run.

System generated display field containing information as to the success or
failure of a scheduled script.

Professional Programming Services, Inc. 2-3 VOSL mv1.0.0696.01

